Ein einfaches Moving Average Implementierung in Java Bei mehreren Gelegenheiten wollte ich einfache Metriken in meinem Java-Anwendungen, zum Beispiel die Anzahl der Treffer pro Stunde, oder Fehler während eines Zeitraums zu berechnen. Während der Berechnung einfacher Metriken ist nicht schrecklich schwierig, seine nur extra Arbeit und Id eher verbringen diese Zeit auf der Problem-Domain. Ich war überrascht, keine allgemein akzeptierten Lösungen für Metriken in Java zu finden. Ich fand Metrics, aber es schien ein wenig zu kompliziert und nicht gut dokumentiert - Alles, was ich wollte, war es, einen gleitenden Durchschnitt zu berechnen. Ich dachte über das Problem einiges mehr und entschied es nicht ein schwieriges Problem. Heres meine Lösung Dies funktioniert durch die Schaffung eines Arrays von Fenster-Update-Frequenz Größe, dann ein Thread setzt die Zählung auf den nächsten Index im Array auf die Update-Frequenz. Die Zählung für das Intervall ist einfach arrayi - arrayi1, das ist die jüngste Zählung minus der ältesten Zählung. Für ein 10-Minuten-Intervall ist die älteste Zählung (i1) genau 10 Minuten alt. Um einen gleitenden Durchschnitt zu unserem Code hinzuzufügen, benötigen Sie zunächst einen Zähler mit AtomicLong. Dieser Zähler sollte basierend auf den Ereignissen inkrementiert werden, die für das Berechnen interessant sind (z. B. POST-Anforderungen für einen REST-Dienst). Wir müssen die Implementierung mit Zugriff auf den Zähler bereitstellen und das wird durch die GetCount-Schnittstelle erreicht. Hier Ill erstellen einen gleitenden Durchschnitt mit einem 5-Minuten-Fenster, das jede Sekunde aktualisiert. Und um den aktuellen Durchschnitt zu erhalten, rufen wir einfach die getAverage-Methode auf: Ein Schlüsselimplementierungsdetail ist, wie die Arraygröße bestimmt wird: indem das Fenster durch die Aktualisierungshäufigkeit dividiert wird. So kann ein großes Fenster mit einer häufigen Aktualisierungshäufigkeit eine beträchtliche Menge an Speicher verbrauchen. In diesem Beispiel ist die Array-Größe vernünftig 300. Wenn wir jedoch einen 24-Stunden-gleitenden Durchschnitt mit einem Intervall von 1 Sekunde erstellt haben, wäre die Größe 86400 Eine vernünftigere Aktualisierungsfrequenz für einen Zeitraum von 24 Stunden kann alle 5 Minuten betragen (Arraygröße von 288 ). Eine weitere Überlegung der Auswahl der Fenster-und Update-Frequenz ist das Fenster muss durch die Frequenz teilbar. Zum Beispiel ist ein 2-minütiges Fenster mit einer 6-Sekunden-Aktualisierungsfrequenz ok, aber eine 7-Sekunden-Aktualisierungsfrequenz ist nicht vorhanden, da es nicht durch 120 teilbar ist. Eine IllegalArgumentException wird geworfen, wenn die Fenstermodul-Aktualisierungsfrequenz nicht Null ist. Diese Implementierung erfordert einen Thread pro gleitenden Durchschnitt, was nicht sehr effizient ist. Eine bessere Lösung wäre, einen Thread über viele Durchschnitte zu teilen. Aktualisieren. Ich habe den Code aktualisiert, um einen Thread hier zu teilen. Schließlich theres ein Anfangszustandproblem: wir dont haben Daten noch für das gesamte Fenster. Zum Beispiel, wenn Sie ein 5-Minuten-Fenster und nur 15 Sekunden Daten haben. Diese Implementierung gibt null zurück, bis wir 5 Minuten Daten haben. Ein anderer Ansatz ist, den Durchschnitt abzuschätzen. Angenommen, wir haben eine Zählung von 10 in 30 Sekunden, dann können wir den Durchschnitt als 40 in 2 Minuten abschätzen. Es besteht jedoch das Risiko eines signifikanten Fehlers, indem unvollständige Daten extrapoliert werden. ZB wenn wir einen Sprung von 20 Treffern in 2 Sekunden hatten, würde ich 1200 pro 2 Minuten schätzen, die aller Wahrscheinlichkeit nach weg ist. Ich habe im Wesentlichen ein Array von Werten wie dieses: Das obige Array ist vereinfacht, Im, das 1 sammelt Wert pro Millisekunde in meinem realen Code und ich muss die Ausgabe auf einem Algorithmus, den ich schrieb, um die nächste Peak vor einem Zeitpunkt zu finden verarbeiten. Meine Logik schlägt fehl, weil in meinem Beispiel oben 0.36 die wahre Spitze ist, aber mein Algorithmus würde rückwärts schauen und sehen die sehr letzte Zahl 0.25 als die Spitze, als theres eine Abnahme zu 0.24 vor ihm. Das Ziel ist, diese Werte zu nehmen und einen Algorithmus auf sie, die glätten sie ein wenig, so dass ich mehr lineare Werte. (Dh: Id wie meine Ergebnisse curvy, nicht jaggedy) Ive wurde gesagt, um einen exponentiellen gleitenden durchschnittlichen Filter auf meine Werte anzuwenden. Wie kann ich dies tun Es ist wirklich schwer für mich, mathematische Gleichungen zu lesen, gehe ich viel besser mit Code. Wie verarbeite ich Werte in meinem Array, die Anwendung einer exponentiellen gleitenden Durchschnittsberechnung, um sie herauszufordern, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Müssen Sie einige Zustand zu halten und Sie benötigen einen Tuning-Parameter. Dies erfordert eine kleine Klasse (vorausgesetzt, Sie verwenden Java 5 oder höher): Instantiate mit dem Decay-Parameter, die Sie wollen (kann Abstimmung sollte zwischen 0 und 1) und dann mit Average () zu filtern. Beim Lesen einer Seite auf einige mathematische Rekursion, alles, was Sie wirklich wissen müssen, wenn Sie es in Code ist, dass Mathematiker gerne Indizes in Arrays und Sequenzen mit Indizes schreiben. (Theyve einige andere Anmerkungen außerdem, die nicht helfen.) Jedoch ist die EMA ziemlich einfach, da Sie nur an einen alten Wert erinnern müssen, der keine komplizierten Zustandarrays erfordert. Beantwortet Feb 8 12 at 20:42 TKKocheran: Ziemlich viel. Isn39t es schön, wenn die Dinge einfach sein können (Wenn Sie mit einer neuen Sequenz beginnen, erhalten Sie einen neuen Mittelwert.) Beachten Sie, dass die ersten paar Begriffe in der durchschnittlichen Sequenz wird ein bisschen durch Randeffekte springen, aber Sie erhalten die mit anderen gleitenden Durchschnitten auch. Allerdings ist ein guter Vorteil, dass Sie die gleitende durchschnittliche Logik in die Mittelung einwickeln und experimentieren können, ohne den Rest des Programms zu viel zu stören. Ndash Donal Fellows Ich habe eine harte Zeit, Ihre Fragen zu verstehen, aber ich werde versuchen, trotzdem zu beantworten. 1) Wenn Ihr Algorithmus 0,25 statt 0,36 gefunden hat, dann ist es falsch. Es ist falsch, weil es eine monotone Zunahme oder Abnahme (das ist immer nach oben oder immer nach unten). Wenn Sie ALLE Ihre Daten nicht klassifizieren, sind Ihre Datenpunkte - wie Sie sie darstellen - nichtlinear. Wenn Sie wirklich den maximalen Wert zwischen zwei Zeitpunkten finden wollen, dann schneiden Sie Ihr Array von tmin zu tmax und finden Sie das Maximum dieses Unterarrays. 2) Nun ist das Konzept der gleitenden Durchschnitte sehr einfach: vorstellen, dass ich die folgende Liste haben: 1.4, 1.5, 1.4, 1.5, 1.5. Ich kann es glätten, indem ich den Durchschnitt von zwei Zahlen: 1.45, 1.45, 1.45, 1.5. Beachten Sie, dass die erste Zahl ist der Durchschnitt von 1,5 und 1,4 (zweite und erste Zahlen) die zweite (neue Liste) ist der Durchschnitt von 1,4 und 1,5 (dritte und zweite alte Liste) die dritte (neue Liste) der Durchschnitt von 1,5 und 1,4 (Vierte und dritte), und so weiter. Ich könnte es Zeitraum drei oder vier gemacht haben, oder n. Beachten Sie, wie die Daten viel glatter sind. Ein guter Weg, um zu sehen, gleitende Durchschnitte bei der Arbeit ist, gehen Sie zu Google Finance, wählen Sie eine Aktie (versuchen Tesla Motors ziemlich volatil (TSLA)) und klicken Sie auf Technische Daten am unteren Rand des Diagramms. Wählen Sie Moving Average mit einer bestimmten Periode und Exponential gleitenden Durchschnitt, um ihre Differenzen zu vergleichen. Exponentielle gleitende Durchschnitt ist nur eine weitere Ausarbeitung dieser, aber Gewichte die älteren Daten weniger als die neuen Daten ist dies ein Weg, um die Glättung nach hinten auszugleichen. Bitte lesen Sie den Wikipedia-Eintrag. Also, dies ist eher ein Kommentar als eine Antwort, aber die kleine Kommentar-Box war nur zu klein. Viel Glück. Wenn Sie Probleme mit der Mathematik haben, könnten Sie mit einem einfachen gleitenden Durchschnitt statt exponentiell gehen. Also die Ausgabe erhalten Sie die letzten x-Terme durch x geteilt werden. Ungetestetes Pseudocode: Beachten Sie, dass Sie die Anfangs - und Endteile der Daten behandeln müssen, da deutlich, dass Sie die letzten 5 Ausdrücke nicht durchschnittlich sind, wenn Sie auf Ihrem 2. Datenpunkt sind. Außerdem gibt es effizientere Methoden, diesen gleitenden Durchschnitt (sum sum - älteste neueste) zu berechnen, aber dies ist, um das Konzept von dem, was passiert, zu bekommen. Antwort # 2 am: August 20, 2010, 09:10:49 am »Ihre Antwort 2017 Stack Exchange, IncIm nicht suren der richtigen Lösung aber seit dem Summieren der Durchschnitt jeder Probe würde eine angemessene Menge von Rundungsfehler führen. Hmm Ich frage mich, wenn die Trennung der gebrochenen Teil aus dem ganzen Teil helfen würde. Teilen Sie den ganzen Teil jeder Zahl durch den Zähler. Halten Sie drei laufende Summen: 1) der Durchschnitt der ganzen Teile, 2) der Rest von jeder Division und 3) der Bruchteil einer jeden Zahl. Jedes Mal, wenn der ganze Teil einer Zahl geteilt wird, wird das gesamte Teilergebnis zu der durchschnittlichen laufenden Summe addiert, und der Rest wird zu der verbleibenden laufenden Summe addiert. Wenn die verbleibende laufende Summe einen Wert größer oder gleich dem Zählwert erhält, wird sein dividiert durch die Zählung mit dem gesamten Teilergebnis zu der durchschnittlichen laufenden Summe addiert, und der Rest wird zu der restlichen laufenden Summe addiert. Auch wird bei jeder Berechnung der Bruchteil zur Bruchlaufsumme addiert. Wenn die Mittelung beendet ist, wird die verbleibende laufende Summe durch die Zählung geteilt, und das Ergebnis wird der durchschnittlichen laufenden Summe als eine fließende Zahl hinzugefügt. Zum Beispiel: Nun, was mit der fraktionalen laufenden Summe zu tun. Die Gefahr des Überlaufs ist hier viel weniger wahrscheinlich, obwohl es noch möglich ist, so dass man damit umgehen würde, wäre es, die gebrochene laufende Summe durch den Zähler am Ende aufzuteilen und es zu unserem Ergebnis hinzuzufügen: Eine Alternative wäre, den fraktionalen Betrieb zu überprüfen Summe bei jeder Berechnung, um zu sehen, ob sie größer oder gleich count ist. Wenn das passiert, tun Sie einfach das Gleiche, was wir mit der restlichen Summe machen. Excellent Jomit Vaghela 6-Mar-07 21:00 Ich mochte, was Sie gesagt haben kleine Jobs schnell zu großen Arbeitsplätzen. Denken an Optimierung während Codierung ist eine gute Praxis. Große Anstrengung und Erklärung,
No comments:
Post a Comment